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LElTER TO THE EDITOR 

The shapes of domains occurring in the droplet model of phase 
transitions 

H N V Temperleyt 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 16 July 1976 

Abstract. A proper treatment of the droplet model of phase transitions needs some 
knowledge of the degree of compactness of random clusters. It is pointed out that some 
numerical evidence on this is already available for both site and bond clusters on the plane 
square lattice. The domains occurring in a Monte Carlo solution of the percolation problem 
are found to be highly ramified, those for the Ising and Potts problems less so. 

Domb (1974,1976) has recently examined the use of the droplet approximation for the 
study of dilute ferromagnets and of the analytic nature of phase transitions. He 
concluded that it is not enough to consider domains of ‘conventional’ droplet shape (in a 
two-dimensional model perimeter proportional to the square root of the area), but that 
one must also consider contributions to the free energy from ‘ramified.’ domains or 
droplets (perimeter proportional to the area). He showed that certain dficulties in the 
original form of the droplet model disappear if this is done. Domb et a1 (1975) report 
the results of some Monte Carlo studies, which show that the relevant domains in the 
percolation problem are indeed ramified. Stauffer (1975) suggested that the consistent 
use of the droplet model may require fairly precise estimates of domain numbers of a 
given area and perimeter. He also suggested that the domains that dominate in the 
Onsager-Ising problem are not necessarily less ramified than those that dominate in the 
percolation problem. 

In this letter, we shall point out that definite numerical information with a bearing on 
these matters is already available for both ‘site’ and ‘bond’ types of domain, and that 
more could be obtained with relatively little effort. 

We now consider the enumeration of single connected domains of sites on the plane 
square lattice: ‘site clusters’. This problem (the ‘animal’ problem) is still unsolved 
despite a great deal of work. Temperley (1956) showed that a restricted form of it, 
namely the enumeration of these connected domains without gaps in the columns (so 
that each column consists of a continuous line of sites, gaps in the rows being allowed) 
has a closed algebraic generating function 

x2z(1 - z ) ~  G =  
1 - ( x 2  +4)2 + ( x 2  +6)z2 - (x4-x2+4)z3 + (1 -x2)z4 
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N 2L where the coefficient of z x 
columns. For N and L large, we have, as usual 

is the number of such domains containing N sites and L 

a 
Naz-(ln G) 

az 

and we obtain the expected value of L for a given N by putting x = 1 in (2). For N large 
and x = 1, the relevant root of the denominator is z - 0.316 (not d as wrongly stated in 
the paper). 

Inserting these values, we conclude that for a large domain NIL = 2.4, that is to say 
that the majority of large domains are ramified, the number of sites in each column 
being only about 2.4. This particular subset of domains may not have gaps in the 
columns. The completely general ‘animal’ or ‘site cluster’ may have gaps in the columns 
and internal ‘lakes’, so may be expected to be, on the average, even more ramified than 
this subset. 

Temperley (1956) also considered the problem of enumerating domains of this 
restricted type by perimeter as well as by area. He obtained a set of difference equations 
for this more general problem but was only able to obtain the generating function in 
special cases. The difference equations should provide the desired information about 
the asymptotic distribution of number of domains as a function of perimeter and area. 

We next consider bond clusters, and the percolation and Potts problems. We state 
the ‘bond percolation problem’ as follows. Select at random a fraction p of the bonds on 
the plane square lattice. What is the expected number of connected domains formed by 
the bonds? (We make the convention that an isolated site, to which none of the chosen 
bonds are incident, is counted as a domain.) We state the Potts problem thus: each 
point on the lattice can be coloured with one of q colours. There is an interaction 
energy-J for each pair of neighbouring points coloured alike. (The interaction for 
unlike pairs is taken as zero.) In other words, we weight each configuration with a factor 
exp(J/kT) for each like pair of neighbours. We then ask ‘how does the expected 
equilibrium number of like pairs of neighbours vary with J/kT?’ 

The solutions of these problems are at present known analytically only at the critical 
values of p or T, but we shall show that they give considerable information about the 
degree of ramification of ‘bond clusters’. The critical cases are the cases of most 
physical interest and the ones that are the most difficult to handle by series expansion 
methods. 

Temperley and Lieb (1971) and Baxter (1973) proved two distinct results for these 
problems. Firstly, they can both be transformed into particular cases of the problem of 
evaluating the Whitney-Tutte polynomial for the plane square lattice. This polynomial 
is defined as the following sum over all sub-graphs of the lattice, the sub-graphs being 
formed by removing bonds from the lattice but leaving all the sites. We define the 
polynomial in the form tabulated by Temperley and Lieb (1971) tables 4 and 6: 

(3) 
’ C + S )  I W(q, x) = c qz( x 

where, in each sub-graph, C is the number of connected clusters of bonds plus the 
number of isolated sites, S is its nullity or cyclomatic number and I is the total number of 
bonds. We can eliminate any one of these quantities from (3) by using Euler’s relation 
C = L - 1 + S where L is the total number of points in the lattice. For example, we can 
eliminate S and express (3) in the form 



Letter to the Editor L115 

which is the form used by Baxter (1973), who, showed that the Potts problem is 
equivalent to evaluating (4) for q integral and q z x  = exp(J/kT) - 1. The percolation 
problem is equivalent to evaluating the expected value of C as a function of x for q in 
the neighbourhood of unity. (W is trivial if q = 1 what we want is e= 
limq-,l a(ln w)/aq.)  The case q = 2 corresponds to the Onsager-Ising problem without 
magnetic field, and, for this case, W is simply related to Onsager’s (1944) solution 
and can be obtained for all values of x. At critical (x = 1)L-I In W is found to be 
ln(1 + 2-9 + (2G/7r) where G is Catalan’s constant. This is in satisfactory agreement 
with the numerical values obtained by Cooper and tabulated by Temperley and Lieb 
(1971) in their table 6. 

For other values of q (apart from 0 and 1) and equal horizontal and vertical 
interactions, W is known only at the critical value of x (which is unity for all q ) ,  and this 
is the function tabulated by Temperley and Lieb (1971). For all these critical cases, any 
bond is present with a probability x/(l + x) = i, the expected number of bonds is always 
half the total of 2L and Euler’s relation then shows that the expected values of C and S 
are equal. 

The Potts problem af critical thus reduces to a generalization of the bond 
percolation problem, each sub-gaph being weighted with the power q(C+S) of q. We 
could, for any value of x, solve it by a Monte Carlo method-hoose bonds on the 
lattice at random, and record (C+S)  for a representative selection of sub-graphs of 
each size. (Of course, other ways are known by which the percolation, king and Potts 
problems can be reduced to the enumeration of graphs on the lattice.) 

We now use the data in table 6 of Temperley and Lieb (1971) to show that, for the 
bond percolation problem, the average graph that would occur in such a Monte Carlo 
calculation is highly ramified even at critical. We shall also estimate how the degree of 
ramification changes when q increases up to 4. It is clear from (3) that, as q increases, 
we are giving greater weight to graphs with large C (that is, we are increasing the 
number of components of the average graph) and with large S (that is, we are increasing 
the number of circuits and therefore the compactness). (It is also clear from Euler’s 
relationship that, for fixed numbers of sites and bonds, C and S must increase together.) 

We first do the calculations for q = 1, i.e. Z = 1 in Temperley and Lieb’s (197 1) table 
6. The expected number of connected components and isolated sites was found (table 
5 )  to be 

and this value was shown to be consistent with an estimate from a ‘perimeter’ type series 
expansion. However, this includes isolated sites, the expected number of which is 
known edactly from the perimeter argument (Sykes and Essam 1964). The probabil- 
ity that a given site is isolated is precise1 equal to the probability that all four lines 
incident on it are absent that is to say 1/2 at critical. Subtracting this out from (9, we 
estimate that the number of clusters, each captaining at least one line is 

0.03557L. (6) 
(We could go into even more detail if we wished, since the perimeter argument gives 
separately the numbers of clusters containing 1 ,2 ,3 ,  . . . lines.) The expected number 
of bonds at critical is L and these have to be distributed among the number of clusters of 
lines given by (6), so each such cluster contains, on average, about 28 lines. The 
expected number of independent circuits is also given by (5)  and the fact that the square 
lattice is self-dual means that L/16 of these circuits are expected to be elementary 
squares on the lattice. 

0.09807L (5 )  

1 
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The specification of the typical connected cluster of bonds which would occur in a 
Monte Carlo treatment of the percolation problem: about 28 bonds, enclosing, on an 
average, about 1.7 single squares and one longer cycle. 

It is, therefore, correct to describe the average bond cluster as highly ramified. 28 
bonds can enclose as many as 10 independent cycles on the plane square lattice. Domb 
and Stoll(l976) found a figure of about 80% ramification for the percolation problem, 
which is in good agreement with the above figures. They used the cyclomatic number as 
a measure of compactness. 

Since the expected numbers of components and circuits are the same, we can deduce 
from (5) that the expected number of circuits per line of the average graph is 0.09807 
since the expected number of lines is L. (For a large and very compact graph on the 
square lattice, the number of circuits per line would approach 0.5.) 

For the Ising model q = 2, and the relevant value of Z in table 6 of Temperley and 
Lieb (1971) is 2;. We estimate from the table Zaln W/aZ = 0.256L which means that 
the estimated number of bond clusters and isolated sites is approximately 0.128L. This 
is also the expected number of circuits. We cannot specify the typical cluster as 
precisely as in the case q = 1, because we can no longer calculate the expected number 
of isolated points. The perimeter argument of Sykes and Essam (1964) fails for q # 1. 
We can develop a series expansion by introducing an extra variable into (3) to count the 
number of isolated points and then differentiate logarithmically. The convergence of 
the expansion turns out to be poor and this is not surprising, because x = 1 at critical and 
this is almost certainly the limit of convergence. 

We therefore content ourselves with recording the expected number of circuits per 
bond for the three cases q = 1,2,4 and these show clearly that, as expected from the 
arguments above, and in agreement with the Monte Carlo work of Domb and Stoll 
(1976), that the ramification decreases as q increases. The expected numbers of circuits 
per bond are: 

0.098 (q = l), 0.128 (q=2),  0-170(q=4). 

In conclusion, we have shown that definite numerical evidence about the expected 
shapes of both site and bond clusters already exists, and that more could be obtained 
with relatively little effort. This should help the further development of the droplet 
model of phase transitions. As pointed out by Domb (1976), study of this model is 
extremely important in view of the fact that it has proved very difficult to obtain even 
asymptotic information about the behaviour of large cluster integrals in the rigorous 
Mayer approach. 
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